Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.475
Filtrar
1.
BMC Plant Biol ; 24(1): 254, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594633

RESUMEN

BACKGROUND: The genus Caragana encompasses multiple plant species that possess medicinal and ecological value. However, some species of Caragana are quite similar in morphology, so identifying species in this genus based on their morphological characteristics is considerably complex. In our research, illumina paired-end sequencing was employed to investigate the genetic organization and structure of Caragana tibetica and Caragana turkestanica, including the previously published chloroplast genome sequence of 7 Caragana plants. RESULTS: The lengths of C. tibetica and C. turkestanica chloroplast genomes were 128,433 bp and 129,453 bp, respectively. The absence of inverted repeat sequences in these two species categorizes them under the inverted repeat loss clade (IRLC). They encode 110 and 111 genes (4 /4 rRNA genes, 30 /31tRNA genes, and 76 /76 protein-coding genes), respectively. Comparison of the chloroplast genomes of C. tibetica and C. turkestanica with 7 other Caragana species revealed a high overall sequence similarity. However, some divergence was observed between certain intergenic regions (matK-rbcL, psbD-psbM, atpA-psbI, and etc.). Nucleotide diversity (π) analysis revealed the detection of five highly likely variable regions, namely rps2-atpI, accD-psaI-ycf4, cemA-petA, psbN-psbH and rpoA-rps11. Phylogenetic analysis revealed that C. tibetica's sister species is Caragana jubata, whereas C. turkestanica's closest relative is Caragana arborescens. CONCLUSIONS: The present study provides worthwhile information about the chloroplast genomes of C. tibetica and C. turkestanica, which aids in the identification and classification of Caragana species.


Asunto(s)
Caragana , Genoma del Cloroplasto , Filogenia , Caragana/genética , Genoma del Cloroplasto/genética
2.
BMC Genomics ; 25(1): 322, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561677

RESUMEN

BACKGROUND: Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS: In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS: This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.


Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Lamiales , Filogenia , ADN Mitocondrial/genética , Lamiales/genética , Mitocondrias/genética
3.
BMC Plant Biol ; 24(1): 293, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632540

RESUMEN

BACKGROUND: Pulsatilla saxatilis, a new species of the genus Pulsatilla has been discovered. The morphological information of this species has been well described, but its chloroplast genome characteristics and comparison with species of the same genus remain to be reported. RESULTS: Our results showed that the total length of chloroplast (cp.) genome of P. saxatilis is 162,659 bp, with a GC content of 37.5%. The cp. genome contains 134 genes, including 90 known protein-coding genes, 36 tRNA genes, and 8 rRNA genes. P. saxatilis demonstrated similar characteristics to other species of genus Pulsatilla. Herein, we compared cp. genomes of 10 species, including P. saxatilis, and found that the cp. genomes of the genus Pulsatilla are extremely similar, with a length of 162,322-163,851 bp. Furthermore, The SSRs of Pulsatilla ranged from 10 to 22 bp in length. Among the four structural regions of the cp. genome, most long repeats and SSRs were detected in the LSC region, followed by that in the SSC region, and least in IRA/ IRB regions. The most common types of long repeats were forward and palindromic repeats, followed by reverse repeats, and only a few complementary repeats were found in 10 cp. genomes. We also analyzed nucleotide diversity and identified ccsA_ndhD, rps16_trnK-UUU, ccsA, and rbcL, which could be used as potential molecular markers for identification of Pulsatilla species. The results of the phylogenetic tree constructed by connecting the sequences of high variation regions were consistent with those of the cp. gene phylogenetic tree, and the species more closely related to P. saxatilis was identified as the P. campanella. CONCLUSION: It was determined that the closest species to P. saxatilis is P. campanella, which is the same as the conclusion based on pollen grain characteristics, but different from the P. chinensis determined based on morphological characteristics. By revealing information on the chloroplast characteristics, development, and evolution of the cp. genome and the potential molecular markers, this study provides effective molecular data regarding the evolution, genetic diversity, and species identification of the genus Pulsatilla.


Asunto(s)
Genoma del Cloroplasto , Pulsatilla , Animales , Filogenia , Especies en Peligro de Extinción , Pulsatilla/genética , Cloroplastos/genética
4.
BMC Biotechnol ; 24(1): 20, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637734

RESUMEN

BACKGROUND: Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy of sequencing analysis. Currently, there are no reported methods for extracting cpDNA from Erigeron breviscapus. Therefore, we developed a suitable method for extracting cpDNA from E. breviscapus and further verified its applicability to other medicinal plants. RESULTS: We conducted a comparative analysis of chloroplast isolation and cpDNA extraction using modified high-salt low-pH method, the high-salt method, and the NaOH low-salt method, respectively. Subsequently, the number of cpDNA copies relative to the nuclear DNA (nDNA ) was quantified via qPCR. As anticipated, chloroplasts isolated from E. breviscapus using the modified high-salt low-pH method exhibited intact structures with minimal cell debris. Moreover, the concentration, purity, and quality of E. breviscapus cpDNA extracted through this method surpassed those obtained from the other two methods. Furthermore, qPCR analysis confirmed that the modified high-salt low-pH method effectively minimized nDNA contamination in the extracted cpDNA. We then applied the developed modified high-salt low-pH method to other medicinal plant species, including Mentha haplocalyx, Taraxacum mongolicum, and Portulaca oleracea. The resultant effect on chloroplast isolation and cpDNA extraction further validated the generalizability and efficacy of this method across different plant species. CONCLUSIONS: The modified high-salt low-pH method represents a reliable approach for obtaining high-quality cpDNA from E. breviscapus. Its universal applicability establishes a solid foundation for chloroplast genome sequencing and analysis of this species. Moreover, it serves as a benchmark for developing similar methods to extract chloroplast genomes from other medicinal plants.


Asunto(s)
Genoma del Cloroplasto , Plantas Medicinales , ADN de Cloroplastos/genética , Plantas Medicinales/genética , Cloroplastos/genética , Mapeo Cromosómico , Filogenia
5.
Sci Rep ; 14(1): 9131, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644374

RESUMEN

The chloroplast (cp) genome sequence of Mussaenda pubescens, a promising resource that is used as a traditional medicine and drink, is important for understanding the phylogenetic relationships among the Mussaenda family and genetic improvement and reservation. This research represented the first comprehensive description of the morphological characteristics of M. pubescens, as well as an analysis of the complete cp genome and phylogenetic relationship. The results indicated a close relationship between M. pubescens and M. hirsutula based on the morphological characteristics of the flower and leaves. The cp was sequenced using the Illumina NovaSeq 6000 platform. The results indicated the cp genome of M. pubescens spanned a total length of 155,122 bp, including a pair of inverted repeats (IRA and IRB) with a length of 25,871 bp for each region, as well as a large single-copy (LSC) region and a small single-copy (SSC) region with lengths of 85,370 bp and 18,010 bp, respectively. The results of phylogenetic analyses demonstrated that species within the same genus displayed a tendency to group closely together. It was suggested that Antirhea, Cinchona, Mitragyna, Neolamarckia, and Uncaria might have experienced an early divergence. Furthermore, M. hirsutula showed a close genetic connection to M. pubescens, with the two species having partially overlapping distributions in China. This study presents crucial findings regarding the identification, evolution, and phylogenetic research on Mussaenda plants, specifically targeting M. pubescens.


Asunto(s)
Genoma del Cloroplasto , Filogenia , Hojas de la Planta/genética , Análisis de Secuencia de ADN/métodos
6.
Sci Rep ; 14(1): 8523, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609472

RESUMEN

Herb genomics, at the forefront of traditional Chinese medicine research, combines genomics with traditional practices, facilitating the scientific validation of ancient remedies. This integration enhances public understanding of traditional Chinese medicine's efficacy and broadens its scope in modern healthcare. Stachys species encompass annual or perennial herbs or small shrubs, exhibiting simple petiolate or sessile leaves. Despite their wide-ranging applications across various fields, molecular data have been lacking, hindering the precise identification and taxonomic elucidation of Stachys species. To address this gap, we assembled the complete chloroplast (CP) genome of Stachys geobombycis and conducted reannotation and comparative analysis of seven additional species within the Stachys genus. The findings demonstrate that the CP genomes of these species exhibit quadripartite structures, with lengths ranging from 14,523 to 150,599 bp. Overall, the genome structure remains relatively conserved, hosting 131 annotated genes, including 87 protein coding genes, 36 tRNA genes, and 8 rRNA genes. Additionally, 78 to 98 SSRs and long repeat sequences were detected , and notably, 6 highly variable regions were identified as potential molecular markers in the CP genome through sequence alignment. Phylogenetic analysis based on Bayesian inference and maximum likelihood methods strongly supported the phylogenetic position of the genus Stachys as a member of Stachydeae tribe. Overall, this comprehensive bioinformatics study of Stachys CP genomes lays the groundwork for phylogenetic classification, plant identification, genetic engineering, evolutionary studies, and breeding research concerning medicinal plants within the Stachys genus.


Asunto(s)
Genoma del Cloroplasto , Stachys , Teorema de Bayes , Filogenia , Fitomejoramiento
7.
BMC Genomics ; 25(1): 396, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649816

RESUMEN

BACKGROUND: While the size of chloroplast genomes (cpDNAs) is often influenced by the expansion and contraction of inverted repeat regions and the enrichment of repeats, it is the intergenic spacers (IGSs) that appear to play a pivotal role in determining the size of Pteridaceae cpDNAs. This provides an opportunity to delve into the evolution of chloroplast genomic structures of the Pteridaceae family. This study added five Pteridaceae species, comparing them with 36 published counterparts. RESULTS: Poor alignment in the non-coding regions of the Pteridaceae family was observed, and this was attributed to the widespread presence of overlong IGSs in Pteridaceae cpDNAs. These overlong IGSs were identified as a major factor influencing variations in cpDNA size. In comparison to non-expanded IGSs, overlong IGSs exhibited significantly higher GC content and were rich in repetitive sequences. Species divergence time estimations suggest that these overlong IGSs may have already existed during the early radiation of the Pteridaceae family. CONCLUSIONS: This study reveals new insights into the genetic variation, evolutionary history, and dynamic changes in the cpDNA structure of the Pteridaceae family, providing a fundamental resource for further exploring its evolutionary research.


Asunto(s)
ADN Intergénico , Genoma del Cloroplasto , ADN Intergénico/genética , Evolución Molecular , Filogenia , Variación Genética , Composición de Base , ADN de Cloroplastos/genética
8.
BMC Genomics ; 25(1): 384, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637729

RESUMEN

BACKGROUND: Curcubita ficifolia Bouché (Cucurbitaceae) has high value as a food crop and medicinal plant, and also has horticultural value as rootstock for other melon species. China is home to many different cultivars, but the genetic diversity of these resources and the evolutionary relationships among them, as well as the differences between C. ficifolia and other Cucurbita species, remain unclear. RESULTS: We investigated the chloroplast (cp) genomes of 160 C. ficifolia individuals from 31 populations in Yunnan, a major C. ficifolia production area in China. We found that the cp genome of C. ficifolia is ~151 kb and contains 128 genes, of which 86 are protein coding genes, 34 encode tRNA, and eight encode rRNAs. We also identified 64 SSRs, mainly AT repeats. The cp genome was found to contain a total of 204 SNP and 57 indels, and a total of 21 haplotypes were found in the 160 study individuals. The reverse repeat (IR) region of C. ficifolia contained a few differences compared with this region in the six other Cucurbita species. Sequence difference analysis demonstrated that most of the variable regions were concentrated in the single copy (SC) region. Moreover, the sequences of the coding regions were found to be more similar among species than those of the non-coding regions. The phylogenies reconstructed from the cp genomes of 61 representative species of Cucurbitaceae reflected the currently accepted classification, in which C. ficifolia is sister to the other Cucurbita species, however, different interspecific relationships were found between Cucurbita species. CONCLUSIONS: These results will be valuable in the classification of C. ficifolia genetic resources and will contribute to our understanding of evolutionary relationships within the genus Cucurbita.


Asunto(s)
Cucurbita , Cucurbitaceae , Genoma del Cloroplasto , Humanos , Cucurbita/genética , Cucurbitaceae/genética , Filogenia , China , Cloroplastos/genética , Variación Genética
9.
BMC Genom Data ; 25(1): 34, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528505

RESUMEN

BACKGROUND: Calamus tetradactylus, a species primarily distributed in Vietnam, Laos, and southern China, is highly valued for its utilization as a small-diameter rattan material. While its physical and mechanical properties have been extensively studied, the genomic characteristics of C. tetradactylus remain largely unexplored. RESULTS: To gain a better understanding of its chloroplast genomic features and evolutionary relationships, we conducted sequencing and assembly of the chloroplast genome of C. tetradactylus. The complete chloroplast genome exhibited the typical highly conserved quartile structure, with specific variable regions identified in the single-copy region (like psbF-psbE, π = 0.10327, ndhF-rpl32, π = 0.10195), as well as genes such as trnT-GGU (π = 0.05764) and ycf1 (π = 0.03345) and others. We propose that these regions and genes hold potential as markers for species identification. Furthermore, phylogenetic analysis revealed that C. tetradactylus formed a distinct clade within the phylogenetic tree, alongside other Calamus species, and C. tetradactylus was most closely related to C. walkeri, providing support for the monophyly of the genus. CONCLUSION: The analysis of the chloroplast genome conducted in this study provides valuable insights that can contribute to the improvement of rattan breeding programs and facilitate sustainable development in the future.


Asunto(s)
Calamus , Genoma del Cloroplasto , Filogenia , Calamus/genética , Genoma del Cloroplasto/genética , Fitomejoramiento , Genómica
10.
Genes (Basel) ; 15(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540322

RESUMEN

Lindera aggregata is a species of the Lauraceae family, which has important medicinal, economic and ornamental values. In this study, we sequenced, assembled and annotated the chloroplast genome of L. aggregata and reannotated and corrected eight unverified annotations in the same genus. The chloroplast genomes taxa from Lindera and from different genera of Lauraceae were compared and analyzed, and their phylogenetic relationship and divergence time were speculated. All the 36 chloroplast genomes had typical quadripartite structures that ranged from 150,749 to 154,736 bp in total length. These genomes encoded 111-112 unique genes, including 78-79 protein-coding genes, 29-30 tRNA and 4 rRNA. Furthermore, there were 78-97 SSRs loci in these genomes, in which mononucleotide repeats were the most abundant; there were 24-49 interspersed repeats, and forward repeat types were the most frequent. The codon bias patterns of all species tended to use codons ending with A or U. Five and six highly variable regions were identified within genus and between genera, respectively, and three common regions (ycf1, ndhF-rpl32 and rpl32-trnL) were identified, which can be used as important DNA markers for phylogeny and species identification. According to the evaluation of the Ka/Ks ratio, most of the genes were under purifying selection, and only 10 genes were under positive selection. Finally, through the construction of the evolutionary tree of 39 chloroplast genomes, the phylogenetic relationship of Lauraceae was clarified and the evolutionary relationship of Lindera was revealed. The species of genus Lindera experienced rapid adaptive radiation from Miocene to Pleistocene. The results provided valuable insights for the study of chloroplast genomes in the Lauraceae family, especially in the genus Lindera.


Asunto(s)
Genoma del Cloroplasto , Lindera , Filogenia , Lindera/genética , Genoma del Cloroplasto/genética , Evolución Biológica , Marcadores Genéticos
11.
Genes (Basel) ; 15(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38540352

RESUMEN

Maize(Zea mays. L) is a globally important crop, and understanding its genetic diversity is crucial for plant breeding phylogenetic analyses and comparative genetics. While nuclear markers have been extensively used for mapping agriculturally important genes, they are limited in recognizing characteristics, such as cytoplasmic male sterility and reciprocal cross hybrids. In this study, we performed next-generation sequencing of 176samples, and the maize cultivars represented five distinct groups. A total of 89 single nucleotide polymorphisms (SNPs) and 11 insertion/deletion polymorphisms (InDels) were identified. To enable high-throughput detection, we successfully amplified and confirmed 49 SNP and InDel markers, which were defined as a Varietal Chloroplast Panel (VCP) using the Kompetitive Allele Specific PCR (KASP). The specific markers provided a valuable tool for identifying chloroplast groups. The verification experiment, focusing on the identification of reciprocal cross hybrids and cytoplasmic male sterility hybrids, demonstrated the significant advantages of VCP markers in maternal inheritance characterization. Furthermore, only a small subset of these markers is needed to provide useful information, showcasing the effectiveness of these markers in elucidating the artificial selection process of elite maize lines.


Asunto(s)
Genoma del Cloroplasto , Polimorfismo de Nucleótido Simple , Polimorfismo de Nucleótido Simple/genética , Mapeo Cromosómico , Marcadores Genéticos/genética , Zea mays/genética , Genotipo , Filogenia , Genoma de Planta/genética , Fitomejoramiento
12.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542477

RESUMEN

Based on Sima and Lu's system of the family Magnoliaceae, the genus Lirianthe Spach s. l. includes approximately 25 species, each with exceptional landscaping and horticultural or medical worth. Many of these plants are considered rare and are protected due to their endangered status. The limited knowledge of species within this genus and the absence of research on its chloroplast genome have greatly impeded studies on the relationship between its evolution and systematics. In this study, the chloroplast genomes of eight species from the genus Lirianthe were sequenced and analyzed, and their phylogenetic relationships with other genera of the family Magnoliaceae were also elucidated. The results showed that the chloroplast genome sizes of the eight Lirianthe species ranged from 159,548 to 159,833 bp. The genomes consisted of a large single-copy region, a small single-copy region, and a pair of inverted repeat sequences. The GC content was very similar across species. Gene annotation revealed that the chloroplast genomes contained 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes, totaling 130 genes. Codon usage analysis indicated that codon usage was highly conserved among the eight Lirianthe species. Repeat sequence analysis identified 42-49 microsatellite sequences, 16-18 tandem repeats, and 50 dispersed repeats, with microsatellite sequences being predominantly single-nucleotide repeats. DNA polymorphism analysis revealed 10 highly variable regions located in the large single-copy and small single-copy regions, among which rpl32-trnL, petA-psbJ, and trnH-psbA were the recommended candidate DNA barcodes for the genus Lirianthe species. The inverted repeat boundary regions show little variation between species and are generally conserved. The result of phylogenetic analysis confirmed that the genus Lirianthe s. l. is a monophyletic taxon and the most affinal to the genera, Talauma and Dugandiodendron, in Sima and Lu's system and revealed that the genus Lirianthe s. s. is paraphyletic and the genus Talauma s. l. polyphyletic in Xia's system, while Magnolia subsection Gwillimia is paraphyletic and subsection Blumiana polyphyletic in Figlar and Nooteboom's system. Morphological studies found noticeable differences between Lirianthe species in aspects including leaf indumentum, stipule scars, floral orientation, tepal number, tepal texture, and fruit dehiscence. In summary, this study elucidated the chloroplast genome evolution within Lirianthe and laid a foundation for further systematic and taxonomic research on this genus.


Asunto(s)
Genoma del Cloroplasto , Magnolia , Filogenia , Anotación de Secuencia Molecular , Plantas/genética
13.
J Phycol ; 60(2): 299-307, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433431

RESUMEN

Gomphonema parvulum is a cosmopolitan freshwater diatom that is used as an indicator in water quality biomonitoring. In this study, we report the culturing of two geographically separated isolates from southeastern North America, their morphology, and the sequencing and assembly of their mitochondrial and chloroplast genomes. Morphologically, both strains fit G. parvulum sensu lato, but the frustules from a protected habitat in South Carolina were smaller than those cited in the historic data of this species from the same location as well as a second culture from Virginia. Phylogenetic analyses using the rbcL gene placed both within a clade with G. parvulum. Genetic markers, including full chloroplast and mitochondrial genomes and the nuclear small subunit rRNA gene region were assembled from each isolate. The organellar genomes of the two strains varied slightly in size due to small differences in intergenic regions with chloroplast genomes of 121,035 bp and 121,482 bp and mitochondrial genomes of 34,639 bp and 34,654 bp. The intraspecific pairwise identities of the chloroplast and mitochondrial genomes of these two isolates were 97.9% and 95.4%, respectively. Multigene phylogenetic analysis demonstrated a close relationship between G. parvulum, Gomphoneis minuta, and Didymosphenia geminata.


Asunto(s)
Diatomeas , Genoma del Cloroplasto , Genoma Mitocondrial , Filogenia , Diatomeas/genética , South Carolina , Virginia , Cloroplastos/genética
14.
Gene ; 912: 148349, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38460806

RESUMEN

Ardisia S.W. (Primulaceae), naturally distributed in tropical and subtropical regions, has edible and medicinal values and is prevalent in clinical and daily use in China. More genetic information for distinct species delineation is needed to support the development and utilization of the genus Ardisia. We sequenced, annotated, and compared the chloroplast genomes of five Ardisia species: A. brunnescens, A. pusilla, A. squamulosa, A. crenata, and A. brevicaulis in this study. We found a typical quadripartite structure in all five chloroplast genomes, with lengths ranging from 155,045 to 156,943 bp. Except for A. pusilla, which lacked the ycf15 gene, the other four Ardisia species contained 114 unique genes, including 79 protein-coding genes, 30 tRNAs, and four rRNAs. In addition, the rps19 pseudogene gene was present only in A. brunnescens. Five highly variable DNA barcodes were identified for five Ardisia species, including trnT-GGU-psbD, trnT-UGU-trnL-UAA, rps4-trnT-UGU, rpl32-trnL-UAG, and rpoB-trnC-GAA. The RNA editiing sites of protein-coding genes in the five Ardisia plastome were characterized and compared, and 274 (A. crenata)-288 (A. brevicaulis) were found. The results of the phylogenetic analysis were consistent with the morphological classification. Sequence alignment and phylogenetic analysis showed that ycf15 genes were highly divergent in Primulaceae. Reconstructions of ancestral character states indicated that leaf margin morphology is critical for classifying the genus Ardisia, with a rodent-like character being the most primitive. These results provide valuable information on the taxonomy and evolution of Ardisia plants.


Asunto(s)
Ardisia , Genoma del Cloroplasto , Filogenia , China , Hojas de la Planta
15.
BMC Genomics ; 25(1): 277, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486176

RESUMEN

BACKGROUND: Indian jointvetch (Aeschynomene indica) is a common and pernicious weed found in the upland direct-seeding rice fields in the lower reaches of the Yangtze River in China. However, there are few reports on the degree of harm, genetic characteristics, and management methods of this weed. The purpose of this study is to clarify the harm of Indian jointvetch to upland direct-seeding rice, analyze the genetic characteristics of this weed based on chloroplast genomics and identify its related species, and screen herbicides that are effective in managing this weed in upland direct-seeding rice fields. RESULTS: In a field investigation in upland direct-seeding rice paddies in Shanghai and Jiangsu, we determined that the plant height and maximum lateral distance of Indian jointvetch reached approximately 134.2 cm and 57.9 cm, respectively. With Indian jointvetch present at a density of 4/m2 and 8/m2, the yield of rice decreased by approximately 50% and 70%, respectively. We further obtained the first assembly of the complete chloroplast (cp.) genome sequence of Indian jointvetch (163,613 bp). There were 161 simple sequence repeats, 166 long repeats, and 83 protein-encoding genes. The phylogenetic tree and inverted repeat region expansion and contraction analysis based on cp. genomes demonstrated that species with closer affinity to A. indica included Glycine soja, Glycine max, and Sesbania cannabina. Moreover, a total of 3281, 3840, and 3838 single nucleotide polymorphisms were detected in the coding sequence regions of the cp. genomes of S. cannabina voucher IBSC, G. soja, and G. max compared with the A. indica sequence, respectively. A greenhouse pot experiment indicated that two pre-emergence herbicides, saflufenacil and oxyfluorfen, and two post-emergence herbicides, florpyrauxifen-benzyl and penoxsulam, can more effectively manage Indian jointvetch than other common herbicides in paddy fields. The combination of these two types of herbicides is recommended for managing Indian jointvetch throughout the entire growth period of upland direct-seeding rice. CONCLUSIONS: This study provides molecular resources for future research focusing on the identification of the infrageneric taxa, phylogenetic resolution, and biodiversity of Leguminosae plants, along with recommendations for reliable management methods to control Indian jointvetch.


Asunto(s)
Fabaceae , Genoma del Cloroplasto , Herbicidas , Oryza , Filogenia , China , Herbicidas/toxicidad , Oryza/genética
16.
BMC Genom Data ; 25(1): 30, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491489

RESUMEN

BACKGROUND: The suamc genus Rhus (sensu stricto) includes two subgenera, Lobadium (ca. 25 spp.) and Rhus (ca. 10 spp.). Their members, R. glabra and R. typhina (Rosanae: Sapindales: Anacardiaceae), are two economic important species. Chloroplast genome information is of great significance for the study of plant phylogeny and taxonomy. RESULTS: The three complete chloroplast genomes from two Rhus glabra and one R. typhina accessions were obtained with a total of each about 159k bp in length including a large single-copy region (LSC, about 88k bp), a small single-copy regions (SSC, about 19k bp) and a pair of inverted repeats regions (IRa/IRb, about 26k bp), to form a canonical quadripartite structure. Each genome contained 88 protein-coding genes, 37 transfer RNA genes, eight ribosomal RNA genes and two pseudogenes. The overall GC content of the three genomes all were same (37.8%), and RSCU values showed that they all had the same codon prefers, i.e., to use codon ended with A/U (93%) except termination codon. Three variable hotspots, i.e., ycf4-cemA, ndhF-rpl32-trnL and ccsA-ndhD, and a total of 152-156 simple sequence repeats (SSR) were identified. The nonsynonymous (Ka)/synonymous (Ks) ratio was calculated, and cemA and ycf2 genes are important indicators of gene evolution. The phylogenetic analyses of the family Anacardiaceae showed that the eight genera were grouped into three clusters, and supported the monophyly of the subfamilies and all the genera. The accessions of five Rhus species formed four clusters, while, one individual of R. typhina grouped with the R. glabra accessions instead of clustering into the two other individuals of R. typhina in the subgenus Rhus, which showed a paraphyletic relationship. CONCLUSIONS: Comparing the complete chloroplast genomes of the Rhus species, it was found that most SSRs were A/T rich and located in the intergenic spacer, and the nucleotide divergence exhibited higher levels in the non-coding region than in the coding region. The Ka/Ks ratio of cemA gene was > 1 for species collected in America, while it was < 1 for other species in China, which dedicated that the Rhus species from North America and East Asia have different evolutionary pressure. The phylogenetic analysis of the complete chloroplast genome clarified the Rhus placement and relationship. The results obtained in this study are expected to provide valuable genetic resources to perform species identification, molecular breeding, and intraspecific diversity of the Rhus species.


Asunto(s)
Anacardiaceae , Genoma del Cloroplasto , Magnoliopsida , Rhus , Humanos , Filogenia , Rhus/genética , Anacardiaceae/genética , Magnoliopsida/genética , Codón/genética
17.
Funct Integr Genomics ; 24(2): 64, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517551

RESUMEN

Pittosporum (Pittosporaceae) is famous as the ornamental and medical values, which is distributed tropical and subtropical regions of Eastern Hemisphere. The few phylogenetic studies have included samples from the Pacific Island, but the phylogenetic relationships of Asian species has not been studied. Here, the complete chloroplast (cp) genomes of ten Pittosporum species from East Asia were first sequenced and compared with those of the published species of this genus. Our results indicated that cp genomes of these species had a typical and conserved quadripartite structure. 131 genes were identical in order and orientation and no changes of inverted repeat (IR) occurred. However, the comparative analysis of cp genomes suggested that sequence divergence mainly appeared in non-coding or intergenic regions, in which several divergence hotspots were identified. By contrast, protein-coding genes showed the lowest variance under strong purifying selection. Phylogenetic analysis based on the cp genome sequences showed that the tested Pittosporum species were clustered into two major clades, in which the Asian species formed Clade I and the remaining species from Australia and New Zealand formed Clade II with high support values, which was consistent with the results of ITS data with low support values. These results suggested that cp genome is a robust phylogenetic indicator for deep nodes in the phylogeny of Pittosporum. Meanwhile, these results will provide the valuable information to better understand the phylogeny and biogeography of Pittosporum.


Asunto(s)
Genoma del Cloroplasto , Filogenia , Asia Oriental
18.
Funct Integr Genomics ; 24(2): 45, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429550

RESUMEN

Gracilariaceae is a group of marine large red algae and main source of agar with important economic and ecological value. The codon usage patterns of chloroplast genomes in 36 species from Graciliaceae show that GC range from 0.284 to 0.335, the average GC3 range from 0.135 to 0.243 and the value of ENC range from 35.098 to 42.327, which indicates these genomes are rich in AT and prefer to use codons ending with AT in these species. Nc plot, PR2 plot, neutrality plot analyses and correlation analysis indicate that these biases may be caused by multiple factors, such as natural selection and mutation pressure, but prolonged natural selection is the main driving force influencing codon usage preference. The cluster analysis and phylogenetic analysis show that the differentiation relationship of them is different and indicate that codons with weak or unbiased preferences may also play an irreplaceable role in these species' evolution. In addition, we identified 26 common high-frequency codons and 8-18 optimal codons all ending in A/U in these 36 species. Our results will not only contribute to carrying out transgenic work in Gracilariaceae species to maximize the protein yield in the future, but also lay a theoretical foundation for further exploring systematic classification of them.


Asunto(s)
Uso de Codones , Genoma del Cloroplasto , Filogenia , Codón/genética , Proteínas/genética
19.
BMC Genomics ; 25(1): 247, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443830

RESUMEN

BACKGROUND: Ampelopsideae J. Wen & Z.L. Nie is a small-sized tribe of Vitaceae Juss., including ca. 47 species from four genera showing a disjunct distribution worldwide across all the continents except Antarctica. There are numerous species from the tribe that are commonly used as medicinal plants with immune-modulating, antimicrobial, and anti-hypertensive properties. The tribe is usually recognized into three clades, i.e., Ampelopsis Michx., Nekemias Raf., and the Southern Hemisphere clade. However, the relationships of the three clades differ greatly between the nuclear and the plastid topologies. There has been limited exploration of the chloroplast phylogenetic relationships within Ampelopsideae, and studies on the chloroplast genome structure of this tribe are only available for a few individuals. In this study, we aimed to investigate the evolutionary characteristics of plastid genomes of the tribe, including their genome structure and evolutionary insights. RESULTS: We sequenced, assembled, and annotated plastid genomes of 36 species from the tribe and related taxa in the family. Three main clades were recognized within Ampelopsideae, corresponding to Ampelopsis, Nekemias, and the Southern Hemisphere lineage, respectively, and all with 100% bootstrap supports. The genome sequences and content of the tribe are highly conserved. However, comparative analyses suggested that the plastomes of Nekemias demonstrate a contraction in the large single copy region and an expansion in the inverted repeat region, and possess a high number of forward and palindromic repeat sequences distinct from both Ampelopsis and the Southern Hemisphere taxa. CONCLUSIONS: Our results highlighted plastome variations in genome length, expansion or contraction of the inverted repeat region, codon usage bias, and repeat sequences, are corresponding to the three lineages of the tribe, which probably faced with different environmental selection pressures and evolutionary history. This study provides valuable insights into understanding the evolutionary patterns of plastid genomes within the Ampelopsideae of Vitaceae.


Asunto(s)
Genoma del Cloroplasto , Genoma de Plastidios , Vitaceae , Humanos , Filogenia , Regiones Antárticas
20.
BMC Res Notes ; 17(1): 69, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468356

RESUMEN

OBJECTIVES: The Peruvian Andean region is an important center for plant domestication. However, to date, there have been few genetic studies on native grain, which limits our understanding of their genetic diversity and the development of new genetic studies for their breeding. Herein, we revealed the plastid genome of Chenopodium petiolare to expand our knowledge of its molecular markers, evolutionary studies, and conservation genetics. DATA DESCRIPTION: Total genomic DNA was extracted from fresh leaves (voucher: USM < PER > :MHN333570). The DNA was sequenced using Illumina Novaseq 6000 (Macrogen Inc., Seoul, Republic of Korea) and reads 152,064 bp in length, with a large single-copy region of 83,520 bp and small single-copy region of 18,108 bp were obtained. These reads were separated by a pair of inverted repeat regions (IR) of 25,218 bp, and the overall guanine and cytosine (GC) was 37.24%. The plastid genome contains 130 genes (111 genes were unique and 19 genes were found duplicated in each IR region), including 86 protein-coding genes, 36 transfer RNA-coding genes, eight ribosomal RNA-coding genes, and 25 genes with introns (21 genes with one intron and four genes with two introns). The phylogenetic tree reconstructed based on single-copy orthologous genes and maximum likelihood analysis indicated that Chenopodium petiolare is most closely related to Chenopodium quinoa.


Asunto(s)
Chenopodium , Genoma del Cloroplasto , Genoma de Plastidios , Perú , Filogenia , Chenopodium/genética , Fitomejoramiento , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...